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Figure 1. Teaser – we propose using textured polygons with NeRF to efficiently render non-opaque scenes, combining high-quality
rendering with modern graphics hardware. To model a scene, we produce a mesh that gives quadrature points along a ray (visualized as
points on the intersection with the cross-section of the mesh) required in volumetric rendering to render an image.

Abstract

We propose a novel Neural Radiance Field (NeRF) repre-
sentation for non-opaque scenes that allows fast inference by
utilizing textured polygons. Despite the high-quality novel
view rendering that NeRF provides, a critical limitation
is that it relies on volume rendering that can be computa-
tionally expensive and does not utilize the advancements in
modern graphics hardware. Existing methods for this prob-
lem fall short when it comes to modelling volumetric effects
as they rely purely on surface rendering. We thus propose to
model the scene with polygons, which can then be used to
obtain the quadrature points required to model volumetric
effects, and also their opacity and colour from the texture.
To obtain such polygonal mesh, we train a specialized field
whose zero-crossings would correspond to the quadrature
points when volume rendering, and perform marching cubes
on this field. We then rasterize the polygons and utilize
the fragment shaders to obtain the final colour image. Our
method allows rendering on various devices and easy inte-
gration with existing graphics frameworks while keeping the
benefits of volume rendering alive.

1. Introduction
Neural Radiance Fields (NeRFs) [29] have gained popularity
by demonstrating impressive capabilities in generating photo-

realistic novel views. They use a continuous volumetric
function to represent a scene with a 5D implicit function
that estimates the density and radiance for any position and
direction. NeRF representations are trained to achieve multi-
view colour consistency for a set of posed images. One of the
main challenges to the widespread adoption of NeRF is the
need for specialized rendering algorithms that are not well-
suited for commonly available hardware. For example, the
traditional implementation of NeRF involves a volumetric
rendering algorithm that calculates the density and radiance
by evaluating a large MLP at hundreds of sample positions
along the ray for each pixel. This rendering process is too
slow for interactive visualization without powerful GPUs.

Researchers have thus been exploring real-time rendering
methods using voxel grids [21] and polygonal meshes [7, 52]
to address the challenge of representing scene geometry in
neural volumetric rendering. While MobileNeRF [7] and
BakedSDF [52] have made progress in using binary opaci-
ties to restrict volumetric content to polygonal meshes they
cannot represent transparent surfaces such as glass or clouds
as they rely on a single point to render each ray, unable to rep-
resent anything other than hard surfaces. To overcome this
limitation, multiple quadrature points need to be sampled
along a ray within the neural volumetric rendering setup.1

1Note that simply using multiple quadrature points does not enable mod-
eling complicated physics-based rendering such as refraction, but we limit
ourselves in this work to what is possible strictly with volume rendering.
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However, precisely and efficiently storing such quadrature
points is difficult and still an open problem. Most relevantly,
SNERG [21] circumvents this problem by, instead of storing
quadrature points precisely, using a volumetric represen-
tation to store opacity, diffuse colour, and feature vectors.
They then march rays through a regular sparse voxel grid
combined with deferred rendering to generate pixel colour.
This method, however, requires large GPU memory to store
volumetric data, and is incompatible with standard rendering
pipelines when it comes to representing transparent objects.

In this work, we recall the traditional painter’s algorithm.
The painter’s algorithm works by sorting triangles back-to-
front and drawing the farthest triangles first. This naturally
allows for achieving rendering of transparent surfaces, as
the front triangle needs to be combined in order with the
back ones using alpha blending. Thus, transparency can be
implemented as a set of rasterization steps. Naturally, we aim
to “bake” an existing NeRF model capable of approximating
both solid and non-solid objects, while still being capable
of running at interactive speed on a variety of devices. To
do so, we need to design an approach that gives triangular
meshes with continuous opacities, such that for solid objects
we need to do a single step of rasterization and for non-solid
objects, we perform multiple rasterization steps. The multi-
step rasterization, when seen at the pixel level, is analogous
to volumetric rendering in NeRFs. While the insight is
straightforward, implementing it is not.

To implement this insight we propose learning an auxil-
iary neural field whose zero crossing surfaces induce a set of
quadrature points for NeRF volumetric rendering – we name
this field the quadrature field. We train the quadrature field
so that it aligns with the surface-field [15] of the scene being
represented; see Fig. 2. 2 With this field, we use marching
cubes to extract the polygonal mesh, and for each ray, we use
the intersection points with the mesh as quadrature points
for volume rendering. To train this field, we use its gradients
to encourage quadrature points to occur near the surfaces.

We evaluate our method on several synthetic object-
centric datasets and open-scene datasets. To summarize,
our contributions are as follows:
• Our approach is the first to use rasterization for rendering

volumetric effects and successfully reconstructs non-solid
objects.

• We introduce a quadrature field and use it to train a neu-
ral field to extract quadrature points for both solid and
transparent objects.

• Our approach produces a compact representation of the
scene and produces comparable results to the originally
trained NeRF models.

• We create a small dataset of shapes with non-opaque sur-
faces to encourage research in this direction.

2Surface fields are applicable to both solid and transparent objects.

a cb

Figure 2. Learned quadrature field from Fig. 1. a) quadrature
field along a cross-section, b) zero crossings at ω = 1 and c) zero
crossings at ω = 50.

2. Related works

Novel view synthesis has been studied extensively in the
literature [44]. In this section, we review previous works
with a focus on real-time rendering.

Light fields. When viewpoints are densely sampled, novel-
view synthesis can be achieved through light field render-
ing [25]. Lumigraph [17] performs interpolation between
observed rays for rendering novel views, but this approach
demands significant memory and restricts camera move-
ments. These challenges can be mitigated by utilizing optical
flow [4] for image interpolation or by employing neural net-
works to represent light fields [2]. Multi-plane [10, 28, 35]
and multi-sphere image representations [1] have demon-
strated usefulness, although they still limit camera move-
ment. However, in practical settings where observed view-
points are not densely captured, reconstructing a 3D repre-
sentation of the scene is crucial for rendering convincing
novel views.

Mesh rendering (classical). Traditional approaches to gen-
erating novel views utilize triangle meshes, typically recon-
structed from point clouds via a multi-step process involving
multi-view stereo [12], Poisson surface reconstruction [23],
and marching cubes [27]. To create novel views, observed
images are re-projected into each desired viewpoint and
merged using either predetermined [5] or learned blending
weights [20, 40, 41]. Although mesh-based representations
are suitable for real-time rendering, they often exhibit inac-
curate geometry in regions with intricate details or complex
materials, resulting in visible imperfections.

Mesh rendering (differentiable). It is also possible to com-
pute explicit triangle meshes through differentiable inverse
rendering. For instance, DefTet [13] differentiably renders a
tetrahedral grid, considering occupancy and colour at each
vertex, and then composes the interpolated values along a
ray. NVDiffRec [31] combines differentiable marching tetra-
hedra [43] with differentiable rasterization to perform full
inverse rendering, allowing extraction of triangle meshes,
materials, and lighting from images. While these approaches
enable scene editing and relighting, they tend to compromise
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view synthesis quality.

Neural radiance fields (NeRF). Neural radiance fields [29]
learn 3D consistent scene representation using continuous
opacities and radiance with the help of MLP. This approach
has produced excellent results for the novel-view synthesis
of 3D objects with reflections [46], outdoor bounded scenes
[3] and unbounded scenes [39]. However, as volumetric
rendering produces pixel colour by evaluating the MLP over
hundreds of points per ray, rendering speed is limited.

Efficient rendering of NeRFs. There have been several
ways to speed up training and inference of NeRF. Early at-
tempts include AutoInt [49], which models the radiance and
opacity of a segment of ray instead of individual points and
alpha composite the values over segments to get pixel colour,
and DeRF [36], which combines multiple small NeRFs
trained to represent disjoint spaces. Garbin et al. [14] intro-
duced caching a factorized representation of neural radiance
field for fast inference albeit at higher memory requirement
for the cache. More recently, this problem has most com-
monly been addressed by trading off compute vs. storage by
storing features into grids. These feature grids can be dense
voxel grids [11], sparse voxel grids [21], multi-resolution
hash grids [30], small MLPs distributed spatially [37] and
low-rank tensor approximations of dense grid [6]. While in
these methods features are converted into radiance/density
by a small MLP, diffuse colours can also be stored on the grid
and view-dependent radiance be represented by spherical
harmonics [11, 22, 54]. Recently, Kerbl et al. [24] proposed
learning a sparse set of 3D Gaussians to represent the scene,
which allows skipping the empty regions of the scene eas-
ily and gives real-time rendering. Their representation is
orthogonal to ours, which is purely surface-based.

Baking neural features. Rather than accelerating the NeRF
directly, one can also “bake” the neural features into polygo-
nal meshes or volumetric textures. SNERG [21] proposed
to store features in sparse volumetric textures, and volu-
metric ray marching combined with deferred rendering to
generate pixel colours. However, this approach cannot take
advantage of the GPU rasterization pipeline, and requires
a large GPU amount of memory to store volumetric data.
A concurrent work MERF [38] allows for fast rendering of
large-scale scenes while utilizing smaller memory in com-
parison to SNERG by utilizing a sparse feature grid and
high-resolution 2D feature planes. They use a hybrid of pla-
nar and volumetric representation to model the scene, which
is orthogonal to our approach which is purely surface-based.
In contrast, MobileNeRF [7] proposed using a classical tri-
angular mesh for baking the neural features into a texture
map, and used binary opacities to optimize for a rasterized
representation via volumetric rendering. BakedSDF [52]
starts with VolSDF to learn a surface-based neural radiance
field and use learned features baked at mesh vertices for

real-time rendering. This produces smoother and cleaner
meshes in comparison to MobileNeRF owing to SDF priors
via Eikonal loss and leads to better performance. However,
both MobileNeRF and BakedSDF are unable to represent
transparent objects faithfully as both representations assume
rays to terminate at the first intersection with a surface.

Modeling transparent scenes. αSurf [50] proposed to re-
construct 3D geometry of semi-transparent objects such as
glass. Their approach is based on a field that is initialized
using normalized values of volumetric density, in compar-
ison to our approach which is based on the surface field
derived from volumetric weights. Their approach extracts
faithful surfaces for transparent scenes but they do not ex-
plore the accurate placement of these surfaces for novel-view
synthesis applications. Recently, NEMTO [47] models trans-
parent objects by extracting the geometry of the object using
DeepSDF [33] based approach and using another network to
model bending of the ray through transparent media. Their
reliance on SDF-based representation prevents them from
modeling volumetric effects like smoke and fur, which our
models can model easily as shown in Sec. 4.

3. Method

Given a set of posed images, our goal is to create a compact
3D representation of the scene that allows fast rendering.
Similarly to Chen et al. [7], the representation consists of
a triangular mesh and a texture map consisting of neural
features and continuous opacities. Our rendering process
consists of two steps:
• We use depth peeling [9] to render a transparent scene

(i.e. continuous opacities) by sequential rasterization of
non-transparent scenes (i.e. binarized opacities); see 3.4.

• We render view-dependent effects via spherical Gaussian
lobes stored in the texture-map;

This representation is created in four-stages:
• Training the NeRF. We train a NeRF model based on

instant-NGP [30] with continuous opacities in which
quadrature points are sampled using importance sam-
pling (Sec. 3.1).

• Training the quadrature-field. We train the quadrature
field network with the help of NeRF. We use the trained
quadrature field to extract a mesh (Sec. 3.2).

• Fine-tuning. We fine-tune the mesh vertices and NeRF
with a network that produces the deformation field (3.3).

• Baking. We extract the neural features on the surface of the
mesh and bake these features into a texture-map (Sec. 3.4).

3.1. Training the NeRF

Mildenhall et al. [29] introduced a 3D scene representation
consisting of an MLP with trainable parameters θ that takes
a position x ∈ R3 and a direction vector d and outputs
radiance c(x,d) and density σ(x). Given a camera pose,
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Figure 3. Overview of our pipeline. We start with a pre-trained network to train a quadrature field that learns the placement of quadrature
points. The extracted mesh from the quadrature field is fine-tuned using a deformation field (deformation is shown using red colour on the
deformed mesh). Lastly, the neural features are baked into a texture map and the mesh, which can be rendered with WebGL.

the pixel colour is computed using volumetric integration
along a ray r = (o,d) which is sampled at quadratures {ti}
inducing a set of spatial samples xi = o+ tid:

C(r;θ) =
∑
i

wi · ci (1)

where wi = αiΠj<i exp(1− αi) is the weight given to
a sampled point, αi = 1 − exp(−σ(xi)δi) is the opacity
and δi = ti+1 − ti. The MLP parameters are optimized by
minimizing the difference between the predicted ray colour
and the ground truth ray colour, specifically:

L(r;θ) = ∥C(r;θ)−Cgt(r)∥2 (2)

In this work, we employ the instant-NGP [30] variant of
NeRF for efficient training. We further use Spherical Gaus-
sians (SG) to represent the colour which allows faster com-
putation of view-dependent effects.

3.2. Training the quadrature field

The value wi in (1) represents the weight given to the quadra-
ture point i; the higher the weight, the more likely light trav-
eling along the direction d hits the point xi. In this sense, wi

can be seen as (view-dependent) surfaceness, as described
by Goli et al. [15]. While for solid surfaces a single quadra-
ture point should be sufficient to approximate the rendering
equation, for non-solid objects more than one quadrature
point is needed. Traditional NeRF models sample a fixed
number of quadrature points from the probability density
function w to approximate integration via (1). However, it is
not clear how to determine these quadrature points determin-
istically. In this work, we propose a deterministic way to find
quadrature points for all surface types. We emphasize here
that we are interested in multiple quadrature points along the
ray to enable volumetric effects, unlike those that only allow
a single point [7, 52].

Defining the quadrature field. We seek to find a field that
concentrates quadrature points in regions where surfaces are
more likely to occur.3 We take inspiration from parameteriza-
tion literature [19], as well as from methods that exploit the

3Note that this is not restricted to solids, but also transparent surfaces
that require many quadrature points per ray to be accurately represented.

zero crossing of a signed distance field to define quadrature
points [32, 48, 51], and define our quadrature field as:

Q(x) = sin(ω F(x;θF )) (3)

where F(x;θF ) : R3 → R (4)

and ω is a hyperparameter that controls the frequency of
zero-crossings as shown in Fig. 2. Our quadrature points are
then defined by the intersection of a ray and the zero cross-
ings of Q. Note the field Q is only a function of position, as
the quadrature points will be represented as a surface mesh,
whose geometry does not change according to a viewpoint.
To train the quadrature field, we optimize the parameters θF
of the function F , and create quadrature points that approxi-
mate the volume-rendering integral along a given ray.

Training the quadrature field. For quality rendering, the
field q should have more zero-crossings in the region where
the weight function w attains higher values. To fulfill this
objective, we make two simple observations:
• Assuming local linearity, the number of zero-crossings

of (3) will be proportional to the gradient of (4);
• As the weight function w in (1) is a view-dependent quan-

tity, we can only supervise the directional derivative of
(4).

Putting these two observations together, the con-
straint∇f(x;θF )·d ≈ w emerges, which we approximately
satisfy via the following loss:

Lf (x;θF ) = ||∇F(x;θF )·d|−max(w(x,d), w(x,−d))|
(5)

where note the function w is non-optimized and instead kept
fixed. As w(x, d) is a function of direction, whereas ∇f(x)
is direction independent, we force the field f to vary most
in the direction for which w(x,±d) is the largest; see Fig. 4.
We use an MLP on top of a hash-grid [30] to model F .

An alternative approach would be to take maximum along
all directions as is suggested in nerf2nerf [16, Eq.10], but
would require an impractical amount of compute in a training
loop. Alternatively, MobileNeRF initializes a pruning grid
to zero in [7, Eq.10] and use surface-field as a lower-bound.
In our case, this entails initializing the network such that
∇f(x) = 0 ∀x, which is harder to achieve. Our formulation,
(5), provides simple and stable optimization.

4



w

t
Figure 4. Quadrature field loss. For a particular point, the quad
field is supervised to predict the directional gradient to be equal to
the maximum weight between the bi-directions ( (5)).

Finally, to encourage sparse creation of surfaces, thus
fewer quadratures to rasterize, we have explored the use
of an additional ℓ1 regularization. We observed that it is
sufficient to simply rely on the pruning data structure in
instant-NGP [30] to remove surfaces from low-density re-
gions. After learning the quadrature field, we extract the
quadrature meshM via marching cubes on the function Q.

3.3. Fine-tuning

While (5) can supervise the density of quadrature points,
their precise location should be derived by directly opti-
mizing for photometric reconstruction losses. One way to
achieve this would be to fine-tune the vertices of the mesh
and the original NeRF directly, as in Chen et al. [7]. However
this saturates GPU memory and, in our experience, leads to
non-smooth optimization. Instead, we employ a vector field
to represent deformations continuously in space:

D(x;θD) : R3 → R3 (6)

and use a perturbed set of quadrature positions {x̃i} to eval-
uate photometric reconstruction via (1), where perturbation
is restricted to happen along the ray direction d:

x̃i = xi + δ(xi) δ(xi) = κ d · D(xi;θD) d (7)

where a hyperbolic tangent is used as the final activation
function in the D, together with κ, to limit the perturba-
tions within the spatial support of the marching cube mesh
and thus stabilize training. We implement the deformation
field using an MLP on top of a hash-grid [30]. Given the
deformation field, a mesh vertex Vi is updated as:

Vi ← Vi + Ec[wi,c(κdc · D(Vi;θD)) dc] / Ec[wi,c] (8)

where c indices over training views, and the perturbation
is weighted by the weight wi,c on the basis of how much a
view c affects the given vertex Vi.
Training loss and regularization. Training is done by defin-
ing photometric loss with perturbed quadrature points as:

Ldef(r,θ,θD) = ∥
∑
i

w(x̃i, r)c(x̃i)−Cgt(r)∥2 (9)

We jointly optimize the parameters of NeRF (θ) and the
deformation field (θD). We also encourage θD to be smooth
by minimizing the norm of deformation, and by encouraging
the deformation to be smooth for each triangle T :

Lreg(θD) = ET ∈M E(xa,xb)∈T (10)

∥D(xa;θD)∥22 + ∥D(xa;θD)−D(xb;θD)∥22

Training implementation. We employ block coordinate
descent, where we first optimize the deformation field till
convergence, and then we update the mesh vertices. In
order to update vertices in (8), we perform a sweep over all
training views to compute wi. Note that we do not change
the topology of the mesh during the above process, as we
assume that the extracted mesh from the quadrature field is
a good approximation.

3.4. Baking and rendering neural features

After fine-tuning, we now prepare the triangular mesh and
the texture maps that we ultimately use to render. We start
by post-processing the mesh to remove surfaces that are not
visible from training views – these are likely artifacts as they
were never “seen”. We further remove the surfaces for which
the maximum volumetric weight w across all training views
is below a threshold. We then construct the texture map
by first parameterizing the mesh using a publicly available
library [53]. We provide more detail on parameterization in
the Supplementary material.

For compatibility with the WebGL rasterization pipeline,
as well as general efficiency, we compress the representation
of colour, alpha, and spherical Gaussian parameters to 8-bit
texture maps. Specifically, we use a sigmoid transforma-
tion to bring unbounded RGB coefficients to a [0, 1] range,
represent spherical Gaussian lobe axes as 8-bit azimuth and
elevation angles, and compress lambda values using a log-
arithmic mapping. These quantization results in minimal
loss in performance as shown in Tab. 4. We implement the
depth peeling algorithm [9] to efficiently render the textured,
transparent meshes that result from our baking process while
taking full advantage of hardware-accelerated rasterization.

3.5. Implementation details

We implement our NeRF using instant-NGP, where we use
10 spherical Gaussians for view-dependent effects. We use
the Nerfacc [26] library based on Pytorch [34], as it provides
stable training at mixed precision with comparable perfor-
mance as the original instant-NGP paper. For real scenes, we
use contraction mapping [3] to train the NeRF. For extracting
meshes, we use a 1024 sized voxel grid for synthetic scenes
and a 2048 sized voxel grid for real scenes. We further add
meshes extracted from the density field of the NeRF with
the mesh extracted from our quadrature field, which helps
in avoiding holes like artifacts. We ablate this choice in the
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Figure 5. Visualization of nerf-synthetic dataset. a) Ground truth, b) instant-ngp with spherical gaussians, c) fine-tuning the meshes
produced by our quadrature field (3.3), d) baked neural features using 4096 texture map, and e) using 8192 texture map. A larger texture size
enables more detailed reconstruction. Notice that our approach is able to represent transparency in the drums.

Methods Mean Lego Chair Ship Mic Drums Mat. Ficus Hotd.
instant-NGP 33.12 35.74 35.72 30.30 36.59 25.68 29.60 33.97 37.37
instant-NGP (SG) 33.00 35.50 35.52 29.99 36.67 25.76 29.50 33.90 37.18
MobileNeRF [7] 30.90 34.18 34.09 29.06 32.48 25.02 26.72 30.20 35.46
SNeRG [21] 30.38 33.82 33.24 27.97 32.60 24.57 27.21 29.32 34.33
VMesh [18] 30.70 - - - - - - - -
Fine-tuned (ours) 31.78 33.90 34.38 29.11 34.50 25.48 27.79 33.08 35.98
Baked (ours) 31.02 32.25 33.62 27.96 34.16 25.20 26.70 32.85 35.41

Table 1. Quantitative performance on NeRF synthetic dataset. We compare our approach with various real-time approaches that are
based on baking neural features.

Tab. 4. We use ω = 100 for synthetic scenes and ω = 10 for
real scenes. We use super-sampling at twice the resolution
to achieve anti-aliasing. We will release our code upon
acceptance of this manuscript.

4. Experiments
We design our experiments to showcase superior reconstruc-
tion quality in real-time on a variety of scenes. We use the
NeRF-Synthetic dataset consisting of synthetic 360-degree
scenes [29]. We also experiment with a more challeng-
ing real-world dataset consisting of 7 scenes from MipN-
eRF 3604 [3]. We focus on comparing previous works like
Mobile-NeRF and Baked-SDF that bake neural features into
a triangular mesh. We provide ablations showing the effect
of our design choices. Finally, we show results on a small
dataset we created of four scenes with non-opaque objects,
two of which are synthetic, and the other two are captured
in indoor environments. We evaluate the performance of
our method using Peak Signal to Noise Ratio (PSNR). Other
metrics such as Learned Perceptual Image Patch Similarity
(LPIPS) and Structural Similarity Index (SSIM) are provided
in the Supp. material.

4Two scenes have been excluded because of license limitation.

4.1. Novel-view synthesis

NeRF synthetic dataset. Our work produces triangular
meshes using the quadrature field that is based on the sur-
face field (Sec. 3.2). An alternative approach to generate
meshes would be to use Delaunay Triangulation on the sur-
face field. This approach produces more vertices of tetra-
hedra in regions where the surface is likely to occur. We
further compare with other methods that propose baking neu-
ral features into a volumetric representation such as voxels
(SNeRG [21]), and meshes (MobileNeRF [7]) and hybrid
volumetric and mesh representation (VMesh [18]).

We report the results on the NeRF synthetic dataset in the
Tab. 1 and qualitative visualization in Fig. 5. Our baseline
mesh reconstructed using Delaunay triangulation results in
bad representation of the underlying surface as is shown
in Fig. 8. Our approach is able to reconstruct transparent
objects such as the drums scene and produces better recon-
struction than the baselines as shown in Fig. 7.

MipNeRF 360 dataset. We further evaluate our approach
to a real-world dataset and compare it with surface-based
representation (MobileNeRF and BakedSDF) and hybrid
volumetric representation (MeRF [38]). Tab. 2 quantitative
performance of our approach and comparison with the base-
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Figure 6. Visualization of mip-NeRF 360 dataset. Top: Ground truth and Bottom: Ours.

Method Mean-indoor Kitchen Room Bonsai Counter Mean-outdoor Garden Bicycle Stump
Instant-NGP 30.07 30.30 30.96 31.46 27.57 24.39 25.47 23.08 24.61
Instant-NGP-SG 29.55 29.75 30.64 30.74 27.07 24.25 25.30 23.02 24.44
Mobile-NeRF - - - - - 23.06 23.54 21.70 23.95
Baked-SDF 27.06 26.72 28.68 27.17 25.69 23.52 24.94 22.04 23.59
Ours 27.32 28.18 28.67 26.62 25.83 22.86 25.17 21.02 22.38
Ours (2×) 27.76 28.71 29.03 27.05 26.25 23.06 25.43 21.15 22.60

Table 2. Qualitative evaluation on mip-NeRF 360 dataset. We compare our approach with various real-time approaches that are based on
baking neural features. MobileNeRF does not report results on indoor scenes. (2×) is super-sampling at twice the resolution.

GT Ours MobileNeRF

Figure 7. Comparison with MobileNeRF [7]. Our approach is
able to represent transparency whereas MobileNeRF fails.

Delaunay MobileNeRF Ours

Figure 8. Mesh reconstruction. Our reconstructed mesh provides
a good representation of the underlying object.

lines. Fig. 6 shows qualitative performance at different stages
of training. Our approach outperforms the surface based
baselines in indoor scenes. Finally, Fig. 9 shows a compari-
son with a surface-based method, e.g., BakedSDF. Previous
works that are based on binary opacities like BakedSDF
struggle to represent transparent objects.

Ours BakedSDF
V1 V1V2 V2

V3 V3

Figure 9. Comparison with BakedSDF [52]. Left: our approach,
right: BakedSDF, and bottom three images focus on glassy objects
from multiple views. In comparison to BakedSDF, our approach
consistently reconstructs non-solid objects from different views.

4.2. Run-time performance

The rendering speed is evaluated on the synthetic dataset and
is reported in the Tab. 3. The rendering performance can
further be improved by pre-sorting the triangles, however,
this is not the main focus of our work [42]. Run-time perfor-
mance on different devices for MipNeRF 360-degree scenes
is reported in the Supp. material.
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FPS @4096 FPS @8192
Macbook pro (M2) 15 8
Desktop Nvidia-3090 20 9
Desktop Nvidia A-6000 30 10

Table 3. Evaluation of rendering speed is done with different texture
sizes on the mic model from the synthetic dataset with 780k faces.

Stage Experimental Settings PSNR

Stage 1

NGP 36.59
NGP + SG + 4 lobes 36.24
NGP + SG + 10 lobes (ours) 36.67

Stage 2

Finetune (ours) 34.50
Finetune w/ density mesh 29.39
Finetune w/ quad-field mesh 34.10
Mesh with ω = 10 31.89
No finetune 30.58
Finetune w/o continuous loss 33.7

Stage 3

Baked (ours) 34.15
Baked w/o quantization 34.18
Baked w/ 4096 texture map 33.39
Baked w/ 8192 texture map 34.15

Table 4. Ablations. We ablate our proposed approach using 1)
different number of spherical gaussian lobes, 2) whether we use
density mesh along with mesh extracted from the quadrature field,
3) the effect of fine-tuning, 4) use of continuous rendering loss, 5)
effect of ω used for mesh extraction, 6) effect of quantization and
7) finally the different sizes of texture map used for baking neural
features. We use the Mic scene from the synthetic dataset to ablate.

4.3. Ablations

We ablate our algorithms on the following parameters in the
Tab. 4 and observe the following:
• Number of spherical-gaussian lobes: Increasing spheri-

cal lobes improves reconstruction of view-dependent ef-
fects, albeit at the cost of rendering.

• Include mesh from density field: Often including coarse
mesh extracted from the density fields complements the
mesh extracted from the quadrature fields and helps fill
the holes. We provide visualization in the Supp. material.

• Effect of omega: Larger omega leads to more quadrature
points, which better captures the volumetric effects.

• Effect of fine-tuning: Fine-tuning aligns the mesh with
the NeRF density field improving the reconstruction.

• Size of texture map: Increasing texels per triangle im-
proves reconstruction but at the cost of speed and memory.

4.4. Experiments on Furry dataset

In order to test the capability of our approach in producing
volumetric effects, we create a dataset with furry and smokey
objects. The dataset consists of two scenes taken indoors
using a Sony RX-0 II camera, capturing furry toy objects.
The other two scenes are created via blender, depicting ar-
tificial smoke and fur. The resulting dataset and our final
reconstructions are compared in Fig. 10. Our approach faith-
fully reconstructs volumetric effects in real-world datasets,
however, also shows limits, when it comes to modeling pure

GT Ours

GT Ours NeUS

Figure 10. Visualization of results on our dataset. Top: our recon-
struction on real scenes. Bottom: our reconstruction on synthetic
scenes and comparison with surface rendering using NeuS [48].

volumetric objects such as the smoke, which requires too
many quadrature points. While this could be alleviated by
introducing more quadrature points, it would come at the
cost of more computation. Still, our renderings as shown in
Fig. 10, are of higher quality than surface renderings pro-
duced by NeuS [48] which is similar to BakedSDF in terms
of representation power. More details and evaluations on
this dataset are shown in Supp. material.

5. Conclusion
Our research addresses a critical limitation of the NeRF rep-
resentation by introducing a novel approach that leverages
textured polygons with continuous opacity and encodes fea-
ture vectors, enabling rapid rendering and integration into
standard graphics pipelines. By training a specialized field
to identify quadrature points and utilizing a novel gradient-
based loss function, we achieve a quality mesh suitable for
interactive rendering on desktops. Moreover, our method
retains the ability to handle scenes featuring transparent
objects, enhancing its practical applicability and potential
impact in computer vision and graphics domains.

Limitations. Our method is bound by the limitations of
NeRF; extending quadrature fields to more general render-
ing techniques would be interesting. Dealing with thin sur-
faces poses a challenge, as rarely, our method may miss thin
surfaces when limited in capacity; recent developments for
better quadrature for NeRFs [45] might be helpful. For large-
scenes, reducing the memory footprint could be interesting
to enable extremely low-end devices.
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Figure 11. Renderings from our web application. Left: Ren-
dering of mic model from the nerf-synthetic dataset and Right:
rendering of cropped mesh from the garden scene from mipNeRF
dataset.

7. Supplementary Material
In this section, we provide information about the following:
• Surface parameterization
• Run-time performance on mipNeRF 360 scenes
• Visualization of ablations (quad mesh)
• Evaluation using more metrics
• More evaluations on fur dataset

7.1. Surface parameterization

To parameterize the mesh generated using Q(x), we first
segment the mesh into smaller patches using graph cuts.
Each segmented patch is parameterized separately and then
all patches are packed into an atlas. For mipNeRF 360
scenes, we parameterize the mesh in contracted space such
that the triangles that are farther away use fewer texels per
unit.

7.2. Run-time performance on mipNeRF 360 scenes

In order to fit the texture map in memory, we only evaluate
the rendering speed on a mesh cropped around the object of
interest as is shown in Fig. 11. We report the run-time in the
Tab. 6.

7.3. Effect of different mesh extraction techniques

Mesh extracted from our quadrature field can result in holes.
This can be alleviated by adding a coarse mesh extracted
from the density field as shown in Fig. 12. This comes at a
little additional cost of more triangles per scene.

7.4. Experiments on fur dataset

Methods Hairy monkey Smokey monkey
PSNR LPIPS SSIM PSNR LPIPS SSIM

NGP + SG 36.78 0.1585 0.9669 44.05 0.1432 0.9807
NeuS [48] 22.81 0.1504 0.9069 23.34 0.1132 0.9148
Ours 34.76 0.1626 0.9565 35.86 0.1687 0.9546

Table 5. Evaluation on synthetic fur dataset. We compare our
approach with NeuS by surface rendering.

Quad mesh + density meshQuad mesh

Figure 12. Mesh extracted from our quadrature field can result in
holes. This can be alleviated by adding a coarse mesh extracted
from the density field.

GT VolSDF Ours

Figure 13. Comparison with VolSDF. Our approach produces
better volumetric effects in comparison to surface rendering done
on mesh extracted from VolSDF. Notice the absence of fur in the
surface rendering using VolSDF.

In order to compare with our mesh-based rendering ap-
proach, We create a baseline using NeuS [48]. In this, we
extract a mesh and perform surface rendering instead of the
volumetric rendering proposed in the original paper. This re-
sults in renderings that lack volumetric effects as is shown in
Figure 10 in the main paper. We compare with this baseline
in the Tab. 5.

For our real dataset, we compare our approach with
VolSDF [51] (on which BakedSDF [52] is based) since the
official implementation of BakedSDF is not available. We
use the publicly available source code from sdfstudio [55]
for comparison. Note that this implementation does not
fine-tune the neural features on the vertices of the mesh, as
proposed by the original BakedSDF. Our approach, which
produces multiple surfaces, thanks to the learned quadra-
ture field, produces volumetric effects like fur as shown in
Fig. 13.

7.5. Evaluation metrics

We provide more evaluation using SSIM and LPIPS metrics
in Tabs. 7 and 9 and Tabs. 8 and 10 respectively on nerf-
synthetic and mipNeRF 360 dataset.
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FPS @4096 FPS @8192
Macbook pro (M2) 10 5
Desktop Nvidia-3090 10 3
Desktop Nvidia A-6000 18 9

Table 6. Evaluation of rendering speed is done with different texture
sizes on the garden model from the Garden scene with 690k faces
and rendering at 800× 800 resolution.

7.6. Architecture design

We implement a quadrature field using the hash grid with
an MLP with two hidden layers, each of width 16. The in-
put coordinates are not only input to the hash grid but also
concatenated with the output of the hash grid. We use Ex-
ponential Linear Units [8] in the MLP which allows double
derivatives used to supervise our quadrature field. For syn-
thetic experiments, we use the hash grid with a maximum
resolution of 512, minimum resolution of 16 and codebook
size of 230. For the real dataset, we use the hash grid with a
maximum resolution of 4096, a minimum resolution of 16
and a codebook size of 225. We use a similar architecture
design to implement our deformation network, except we
use relu non-linearity in the MLP. The choice of these param-
eters is dependent on available GPU memory and validation
performance.
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Method Mean Lego Chair Ship Mic Drums Materials Ficus Hotdog
NGP 0.961 0.980 0.985 0.891 0.991 0.934 0.948 0.982 0.982
NGP SG 0.961 0.979 0.985 0.886 0.991 0.937 0.947 0.982 0.981
MobileNeRF [7] 0.947 0.975 0.978 0.867 0.979 0.927 0.913 0.965 0.973
Fine-tune (ours) 0.954 0.974 0.980 0.875 0.987 0.931 0.927 0.979 0.976
Baked (ours) 0.950 0.965 0.976 0.865 0.986 0.929 0.926 0.978 0.975

Table 7. Evaluation using SSIM metric on NeRF-synthetic dataset.

Method Mean Lego Chair Ship Mic Drums Materials Ficus Hotdog
NGP 0.052 0.024 0.021 0.142 0.015 0.081 0.069 0.026 0.035
NGP SG 0.051 0.024 0.021 0.146 0.014 0.075 0.067 0.026 0.035
MobileNeRF 0.062 0.025 0.025 0.145 0.032 0.077 0.092 0.048 0.050
Fine-tune (ours) 0.060 0.031 0.029 0.147 0.022 0.083 0.086 0.032 0.052
Baked (ours) 0.072 0.065 0.038 0.172 0.025 0.091 0.097 0.034 0.058

Table 8. Evaluation using LPIPS metric on NeRF-synthetic dataset.

Method Mean (indoor) Kitchen Room Bonsai Counter Mean (outdoor) Garden Bicycle Stump
Instant-NGP 0.884 0.893 0.902 0.914 0.826 0.617 0.710 0.529 0.612
Instant-NGP SG 0.877 0.881 0.902 0.908 0.818 0.612 0.706 0.529 0.601
Mobile-NeRF - - - - - 0.527 0.599 0.426 0.556
Baked-SDF 0.837 0.817 0.870 0.851 0.808 0.639 0.751 0.570 0.595
Ours 0.844 0.866 0.876 0.851 0.784 0.560 0.725 0.449 0.505
Ours (2x) 0.856 0.878 0.883 0.862 0.801 0.579 0.732 0.485 0.519

Table 9. Evaluation using SSIM metric on mipNeRF 360 dataset.

Method Mean (indoor) Kitchen Room Bonsai Counter Mean (outdoor) Garden Bicycle Stump
Instant-NGP 0.2051 0.1445 0.2278 0.1826 0.2655 0.4004 0.2892 0.4884 0.4235
Instant-NGP SG 0.2133 0.1591 0.2300 0.1939 0.2704 0.4078 0.2922 0.4887 0.4424
Mobile-NeRF - - - - - 0.4337 0.3580 0.5130 0.4300
Baked-SDF 0.2583 0.2370 0.2510 0.2590 0.2860 0.3173 0.2130 0.3680 0.3710
Ours 0.2519 0.1818 0.2637 0.2642 0.2978 0.4308 0.2667 0.5301 0.4956
Ours (2x) 0.2379 0.1693 0.2556 0.2511 0.2758 0.4127 0.2599 0.5032 0.4750

Table 10. Evaluation using LPIPS metric on mipNeRF 360 dataset.
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